Ruleset Optimization on Isomorphic Oritatami Systems

Yo-Sub Han and Hwee Kim

Department of Computer Science, Yonsei University
50 Yonsei-Ro, Seodaemun-Gu, Seoul 03722, Republic of Korea
{emmous, kimhwee}@yonsei.ac.kr

Abstract. RNA cotranscriptional folding refers to the phenomenon in which an RNA transcript folds upon itself while being synthesized out of a gene. The oritatami system (OS) is a computation model of this phenomenon, which lets its sequence of beads (abstract molecules) fold cotranscriptionally by the interactions between beads according to its ruleset. We study the problem of reducing the ruleset size while maintaining the terminal conformations geometrically same. We first prove the hardness of finding the smallest ruleset, and suggest two approaches that reduce the ruleset size efficiently.

1 Introduction

In nature, a one-dimensional RNA sequence folds itself autonomously and gives rise to a highly-dimensional tertiary structure. It has been a challenging question to predict the tertiary structure from a primary structure. Recently, biochemists showed that the kinetics plays an essential role in the geometric shape of the RNA foldings [1], since the folding caused by intermolecular reactions is faster than the RNA transcription rate [4]. By controlling cotranscriptional foldings, researchers succeeded in assembling a rectangular tile out of RNA, which is called RNA Origami [3]. From this kinetic point of view, Geary et al. [2] proposed a new folding model called the oritatami system (OS). An OS consists of a sequence of beads (which is the transcript) and a set of rules for possible intermolecular reactions between beads. An OS folds its bead sequence as follows: For each bead, the OS determines the best location that maximizes the number of possible interactions using a lookahead of a few upcoming beads and place the current bead at the location. Then it reads the next bead and repeat the same procedure until there is no more bead to place. The lookahead represents the reaction rate of the cotranscriptional folding and the number of interactions represents the energy level. In OS, we call the secondary structure the conformation, and the resulting secondary structure the terminal conformation.

Since an OS folds its transcript according to its own ruleset, with more rules, it becomes more difficult to realize the system in experiments. This motivates us to consider the problem of reducing the size of the alphabet and the ruleset from a theoretical point of view. Since an OS folds its transcript on the triangular lattice, it is important to preserve its geometric properties including the
transcript path and interactions between beads while reducing the ruleset. We say that two OSs are isomorphic if both have the same geometric properties. We first prove that, given an OS, it is NP-hard to find the smallest ruleset of an isomorphic OS in general. Then we propose two practical approaches to the problem: 1) We propose the bead type merging method—merge two bead types that have the same interaction with other bead types. 2) We propose representative fuzzy ruleset construction—a set of rulesets that results in the same set of terminal conformations. We design efficient algorithms to find a representative fuzzy ruleset from a given OS, reduce the size of the fuzzy ruleset by a modified bead type merging, and construct a reduced ruleset from the fuzzy ruleset.

2 Preliminaries

Oritatami systems fold their transcript, a sequence of beads, over the triangular lattice cotranscriptionally by letting nascent beads form as many hydrogen-bond-based interactions (h-interactions, or simply interactions) as possible according to a given set of rules. Let $T = (V, E)$ be the triangular grid graph. A directed simple path $P = p_1p_2 \cdots$ in T is a possibly-infinite sequence of pairwise-distinct points (vertices). Let $P[i]$ be the i-th point p_i and $|P|$ be the number of points in P. A ruleset $H \subseteq \Sigma \times \Sigma$ is a symmetric relation over the set of pairs of bead types such that, for all bead types $a, b \in \Sigma$, $(a, b) \in H$ implies $(b, a) \in H$.

A conformation instance, or configuration, is a triple (P, w, H) of a directed path P in T, $w \in \Sigma^* \cup \Sigma^\omega$, and a set $H \subseteq \{(i, j) \mid 1 \leq i, i + 2 \leq j, \{P[i], P[j]\} \in E\}$ of interactions. This is to be interpreted as the sequence w being folded while its i-th bead $w[i]$ is placed on the i-th point $P[i]$ along the path and there is an interaction between the i-th and j-th beads if and only if $(i, j) \in H$. Configurations (P_1, w_1, H_1) and (P_2, w_2, H_2) are congruent provided $w_1 = w_2$, $H_1 = H_2$, and P_1 can be transformed into P_2 by a combination of a translation, a reflection, and rotations by 60 degrees. The set of all configurations congruent to a configuration (P, w, H) is called the conformation of the configuration and denoted by $C = [(P, w, H)]$. We call w a primary structure of C. Let \mathcal{H} be a ruleset. A rule $(a, b) \in \mathcal{H}$ is useful in the conformation $C = [(P, w, H)]$ if there exists $(i, j) \in H$ such that $w[i] = a$ and $w[j] = b$ or vice versa. Otherwise, the rule is useless in the conformation. An interaction $(i, j) \in H$ is valid with respect to \mathcal{H}, or simply \mathcal{H}-valid, if $(w[i], w[j]) \in \mathcal{H}$. We say that a conformation C is \mathcal{H}-valid...
if all of its interactions are \mathcal{H}-valid. For an integer $\alpha \geq 1$, C is of arity α if the maximum number of interactions per bead is α, that is, if for any $k \geq 1$, $|\{i \mid (i, k) \in H\}| + |\{j \mid (k, j) \in H\}| \leq \alpha$ and this inequality holds as an equation for some k. By $C_{\leq \alpha}$, we denote the set of all conformations of arity at most α.

Oritatami systems grow conformations by elongating them under their own ruleset. For a finite conformation C_1, we say that a finite conformation C_2 is an elongation of C_1 by a bead $b \in \Sigma$ under a ruleset \mathcal{H}, written as $C_1 \xrightarrow{\mathcal{H}}_b C_2$, if there exists a configuration (P, w, H) of C_1 such that C_2 includes a configuration $(P \cdot p, w \cdot b, H \cup H')$, where $p \in V$ is a point not in P and $H' \subseteq \{(i, |P|+1) \mid 1 \leq i \leq |P|-1, \{P[i], p\} \in E, (w[i], b) \in \mathcal{H}\}$. This operation is recursively extended to the elongation by a finite sequence of beads as follows: For any configuration $C, C' \xrightarrow{\mathcal{H}}_w C$; and for a finite sequence of beads w and a bead b, a conformation C_1 is elongated to a conformation C_2 by $w \cdot b$, written as $C_1 \xrightarrow{\mathcal{H}}^+_w b C_2$, if there is a conformation C' that satisfies $C_1 \xrightarrow{\mathcal{H}}^+_w C'$ and $C' \xrightarrow{\mathcal{H}}_b C_2$.

An oritatami system (OS) is a 6-tuple $\Xi = (\Sigma, w, \mathcal{H}, \delta, \alpha, C_\sigma = [(P_\sigma, w_\sigma, H_\sigma)])$, where \mathcal{H} is a ruleset, $\delta \geq 1$ is a delay, and C_σ is an \mathcal{H}-valid initial seed conformation of arity at most α, upon which its transcript $w \in \Sigma^* \cup \Sigma^\omega$ is to be folded by stabilizing beads of w one at a time and minimize energy collaboratively with the succeeding $\delta - 1$ nascent beads. The energy of a conformation $C = [(P, w, H)]$ is $U(C) = -|H|$; namely, the more interactions a conformation has, the more stable it becomes. The set $\mathcal{F}(\Xi)$ of conformations foldable by this system is recursively defined as follows: The seed C_σ is in $\mathcal{F}(\Xi)$; and provided that an elongation C_i of C_σ by the prefix $w[1 : i]$ be foldable (i.e., $C_0 = C_\sigma$), its further elongation C_{i+1} by the next bead $w[i+1]$ is foldable if

$$C_{i+1} \in \arg\min_{C \in C_{\leq \alpha}} \min_{C_i \xrightarrow{\mathcal{H}}_w^+ w[i+1] C} \{U(C') \mid C \xrightarrow{\mathcal{H}}^+_w w[i+2 : i+k] C', k \leq \delta, C' \in C_{\leq \alpha}\}. \quad (1)$$

Once we have C_{i+1}, we say that the bead $w[i+1]$ and its interactions are stabilized according to C_{i+1}. A conformation foldable by Ξ is terminal if none of its elongations is foldable by Ξ. We use $C = [(P_\sigma, P, w_\sigma, w, H_\sigma \cup H)]$ to denote a terminal conformation, where w is folded along the path P with interactions in H. An OS is deterministic if, for all i, there exists at most one C_{i+1} that satisfies (1). Namely, a deterministic OS folds into a unique terminal conformation.

Conformations C_1 and C_2 are isomorphic if there exist an instance (P_1, w_1, H_1) of C_1 and an instance (P_2, w_2, H_2) of C_2 such that $P_1 = P_2$ and $H_1 = H_2$. For two sets C_1 and C_2 of conformations, we say that two sets are isomorphic if there exists an one-to-one mapping $C_1 \in C_1 \rightarrow C_2 \in C_2$ such that C_1 and C_2 are isomorphic. We say that two oritatami systems are isomorphic if they fold the isomorphic set of foldable terminal conformations. A rule (a, b) is useful in an OS if the rule is useful in one of the terminal conformations of the system.
3 Hardness of ruleset optimization on isomorphic oritatami systems

We first define the ruleset optimization problem on isomorphic OSs.

Problem 1 (RSOPT-Isomorphic). Given an OS \(\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma = [(P_\sigma, w_\sigma, H_\sigma)]) \), find an isomorphic OS \(\Xi' = (\Sigma', w', H', \delta, \alpha, C'_\sigma = [(P'_\sigma, w'_\sigma, H'_\sigma)]) \) where \(|H'| \) is minimum.

Before we tackle the problem, we revisit the following problem.

Problem 2 (RSD-UniqConformation [5]). Given a finite conformation \(C = [(P, w, H)] \), an alphabet \(\Sigma \), an arity \(\alpha \), a delay \(\delta \), a seed \(C_\sigma = [(P_\sigma, w_\sigma, H_\sigma)] \)\(^1\), and a finite transcript \(w \in \Sigma^* \), find a ruleset \(H \) such that \(C'' = [(P_\sigma P, w_\sigma w, H_\sigma \cup H)] \) is the unique terminal conformation of the OS \(\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma) \).

The problem is NP-hard when \(\alpha, \delta \geq 2 \) or \(\delta \geq 3 \). Now, we propose another problem (Problem 3) and prove its hardness based on the proof for the RSD-UniqConformation problem [5]. Then, we prove the hardness of the RSOPT-Isomorphic problem using the hardness result of Problem 3.

Problem 3 (RSD-Isomorphic). Given a path \(P \), a set \(H \) of interactions, an alphabet \(\Sigma \), an arity \(\alpha \), a delay \(\delta \), a seed \(C_\sigma = [(P_\sigma, w_\sigma, H_\sigma)] \), find a ruleset \(H \) and a finite transcript \(w \) such that \(C = [(P_\sigma P, w_\sigma w, H_\sigma \cup H)] \) is the unique terminal conformation of the OS \(\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma) \).

Lemma 1. The RSD-Isomorphic problem is NP-hard when \(\alpha, \delta \geq 2 \) or \(\delta \geq 3 \).

Theorem 1. The RSOPT-Isomorphic problem is NP-hard when \(\alpha, \delta \geq 2 \) or \(\delta \geq 3 \).

4 Ruleset reduction by bead type merging

Since the RSOPT-Isomorphic problem is NP-hard in general, we consider a poly-time heuristic for optimizing a ruleset efficiently. Because not all rules in a ruleset are useful, we start with removing useless rules. For a deterministic OS, it is sufficient to simulate the OS and find useless rules. The simulation takes \(O(n \cdot 5^d) \) time, where \(n \) is the length of the transcript.

Corollary 1. For a deterministic OS \(\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma = [(P_\sigma, w_\sigma, H_\sigma)]) \), we can remove useless rules in \(O(n \cdot 5^d) \) time, where \(n = |w| \).

For a nondeterministic OS, we show the hardness of the problem.

Theorem 2. For a nondeterministic OS \(\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma = [(P_\sigma, w_\sigma, H_\sigma)]) \) and a rule \(r \in H \), it is coNP-hard to determine whether or not \(r \) is useful.

\(^1\) In the original paper, the seed was defined by a single term \(\sigma \).
It is coNP-hard to identify and remove useless rules in general. Thus, we propose a method to reduce the ruleset size regardless of usefulness of rules. For two bead types a and b, suppose $(a; c) \in H$ if and only if $(b; c) \in H$ for all possible bead types c. If we merge beads a and b and replace all b’s in the transcript and the seed to a’s, it is straightforward to verify that the resulting OS is isomorphic to the original OS. We formally define the problem of finding a smallest ruleset based on the bead type merging.

Problem 4 (RSR-BTM-Isomorphic). Given a ruleset $H \subseteq \Sigma \times \Sigma$ of an OS, find a minimum alphabet Σ' and a ruleset $H' \subseteq \Sigma' \times \Sigma'$, where there exists a homomorphism $h : \Sigma \to \Sigma'$ such that for each pair of bead types $(x_1, x_2) \in \Sigma \times \Sigma$, $(x_1, x_2) \in H \Leftrightarrow (h(x_1), h(x_2)) \in H'$.

For the RSR-BTM-Isomorphic problem, we construct a binary string x_i for each bead type σ_i, where $x_i[j] = 1$ if $(\sigma_i, \sigma_j) \in H$ and 0 otherwise. It is straightforward that if $x_i = x_j$, then σ_i and σ_j can be successfully merged. We run radix sort for strings $x_1; x_2; \ldots; x_t$ where $t = |\Sigma|$. After the sorting, any set of bead types corresponding to the same (consecutive) string can be successfully merged. Since the length of the strings is t, the radix sort requires $O(t^2)$ time using $O(t)$ space.

Theorem 3. We can solve the RSR-BTM-Isomorphic problem in $O(t^2)$ time using $O(t)$ space, where $t = |\Sigma|$.

5 Rule set reduction by fuzzy ruleset construction

Given an alphabet Σ, we define a fuzzy ruleset to be a pair of a required ruleset $H_P \subseteq \Sigma \times \Sigma$ and a forbidden ruleset $H_N \subseteq \Sigma \times \Sigma$ such that $H_P \cap H_N = \emptyset$. Given an OS $\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma)$, we say that a fuzzy ruleset (H_P, H_N) is a representative fuzzy ruleset of the OS if $\Xi' = (\Sigma, w, H', \delta, \alpha, C_\sigma)$ is isomorphic to Ξ for all H' satisfying the following conditions:

1. If $(a, b) \in H_P$, then $(a, b) \in H'$.
2. If $(a, b) \notin H_N$, then $(a, b) \notin H'$.

Namely, if a fuzzy ruleset (H_P, H_N) is representative, then rules in H_P should be included in the ruleset, and rules in H_N should be excluded from the ruleset, which ensures that the system is isomorphic to the original system.

We reduce the ruleset size in two phases: First, given an OS Ξ, we extract a representative fuzzy ruleset from Ξ. Second, we modify the ruleset graph reduction in Section 4 and reduce the size of the fuzzy ruleset. Then, using the fuzzy ruleset, we further reduce the ruleset size.

Problem 5 (FRS-Extraction). Given an OS $\Xi = (\Sigma, w, H, \delta, \alpha, C_\sigma = [P_\sigma, w_\sigma, H_\sigma])$, find a representative fuzzy ruleset (H_P, H_N) minimizing $|H_P| + |H_N|$.

Theorem 4. The FRS-Extraction problem is NP-hard when $\alpha, \delta \geq 2$ or $\delta \geq 3$.
Next, we design a heuristic algorithm for the FRS-Extraction problem. Assume that an OS Ξ folds the set $\{C_1=([P_\sigma P_\xi, w_\sigma w, H_\sigma \cup H_\xi])\}$ of t terminal conformations. We assume that $|w|=n$, and $|w_\sigma|$ and $|H_\sigma|$’s are bounded to $O(n)$. We first propose an algorithm for one terminal conformation C_1, and then apply the algorithm for all terminal conformations. We take the following approach for the problem: First, for each point in P_σ or P_ξ, we assign a distinct bead type to retrieve w_σ and w. Second, we find conditions of the rules, which are necessary and sufficient for an isomorphic OS. Third, we construct a representative fuzzy ruleset from these conditions. Let $P_1 = p_1 p_2 \cdots p_n$ and $P_\sigma = p_{n+1} p_{n+2} \cdots p_{n+m}$.

At first, let $\Sigma = \{\kappa_i \mid 1 \leq i \leq n+m\}$ and assume that κ_i is placed at p_i. We run Algorithm 1, which returns three conditions that are necessary and sufficient for an isomorphic OS. The required condition set P (the forbidden condition set N) includes the set of rules that should be included in (excluded from) the desired ruleset H. The last output is the conditional ruleset $H_k = \{(K \in \Sigma \times \Sigma, s)\}$, which implies that the number of rules in $K \cap H$ should not exceed s. The conditional ruleset has information of rules that are not explicitly shown in the most stable elongation but prevent the path from not following P_1.

Lemma 2. Algorithm 1 runs in $O(5^5 \delta n)$ time using $O(5^5 \delta n)$ space.

Since conditions in H_k are about the rules that are not explicitly shown in the most stable elongation, there is no necessary rule that should be added to P because of H_k. Thus, we construct a representative fuzzy ruleset (P, H_N), where $H_N = N \cup N_{add}$ and N_{add} satisfies conditions in H_k. We prove that minimizing $|H_N|$ is NP-complete.

Lemma 3. Given a set $H_k \subseteq 2^{\Sigma \times \Sigma} \times N$, let $N_{add} \subseteq \Sigma \times \Sigma$ be a set such that, for all $(K_i, s_i) \in H_k$, $|K_i| - |K_i \cap N_{add}| < s_i$ holds. Then, it is NP-complete to find N_{add} with the minimum size.

Since finding the minimum N_{add} is NP-complete, we run Algorithm 2.

Lemma 4. Algorithm 2 runs in $O(5^5 \delta \log n)$ time using $O(5^5 \delta n)$ space.

Once we have a representative fuzzy ruleset (H_P, H_N), the next step is to construct a reduced ruleset that satisfies conditions of the fuzzy ruleset. We construct a fuzzy ruleset graph from (H_P, H_N) by adding positive edges for rules in H_P and negative edges for rules in H_N.

- $V = \Sigma$
- For each pair of molecules $(x_1, x_2) \in \Sigma \times \Sigma$,
 - add $\{(x_1, x_2), 1\}$ to E if $(x_1, x_2) \in H_P$,
 - add $\{(x_1, x_2), -1\}$ to E if $(x_1, x_2) \in H_N$.

Problem 6 (FRSR-BTM-Isomorphic). Given a representative fuzzy ruleset (H_P, H_N) of an OS over an alphabet Σ, find a minimum alphabet Σ' and a ruleset $H' \subseteq \Sigma' \times \Sigma'$, where there exists a homomorphism $h : \Sigma \rightarrow \Sigma'$ such that for every $(x_1, x_2) \in \Sigma \times \Sigma$, $((x_1, x_2) \in P \land (x_1, x_2) \notin N) \Leftrightarrow (h(x_1), h(x_2)) \in H'$.
Lemma 5. The FRSR-BTM-Isomorphic problem is NP-complete.

Note that we reduce the vertex coloring problem to the FRSR-BTM-Isomorphic problem. We formally establish the function f from a fuzzy ruleset graph $G_r = (V_r, E_r)$ to a graph $G_c = (V_r, E_c)$ by the following rules: For all $(v_i, v_j) \in V_r$, $(v_i, v_j) \in E_c$ if and only if we cannot merge v_i and v_j. It requires $O(n^3)$ to construct $f(G_r)$ from G_r, when $n = |V_r|$; We establish the following lemma.

Lemma 6. For a fuzzy ruleset graph $G_r = (V_r, E_r)$, let $G_c = f(G_r)$. Let v_1 and v_2 be two mergeable nodes in V. Let G_c' (G_r') be the graph resulting from G_c (G_r) after merging v_1 and v_2. Then, $G_c' = f(G_r')$.

From Lemma 6, we know that any solution to the vertex coloring problem has its pair solution to the FRSR-BTM-Isomorphic problem. Therefore, we can use approximation algorithms for the vertex coloring problem to find approximate solutions for the FRSR-BTM-Isomorphic problem. One algorithm is Welsh-Powell algorithm [6]. Once all vertices v_i are ordered according to their degrees d_i, the algorithm runs in $O(n^2)$ time and gives at most max, min{ $d_i + 1, t$} colors.

Algorithm 1: ExtractConditionSets

Input: An arity α, a delay δ, a path P_o for a seed, a path P_1 for a transcript and a set H_i of interactions.

Output: A required condition set P, a forbidden condition set N and a conditional ruleset H_k.

1. $\Sigma \leftarrow \{\kappa_i | 1 \leq i \leq n + m\}$.
2. place $\kappa_{n+1}, \kappa_{n+2}, \ldots, \kappa_{n+m}$ to $p_{n+1}, p_{n+2}, \ldots, p_{n+m}$ to form C_o.
3. place κ_1 to p_1.
4. for $i \leftarrow 2$ to n do
 5. place κ_i to p_i.
 6. calculate the sum s_i of the interactions that led κ_i to the position p_i.
 7. for each annotated neighbors p_j of p_i do
 8. if $\{p_i, p_j\} \in H_i$ then add (κ_i, κ_j) to P.
 9. else add (κ_i, κ_j) to N.
 10. for each unannotated path $P' = p'_1p'_2\ldots p'_j$ where $p'_i \neq p_i$ is an unannotated neighbor of p_{i-1} do
 11. $o_j \leftarrow 0, K \leftarrow \emptyset$
 12. for $j \leftarrow 1$ to δ do
 13. for each annotated neighbors p_k of p'_j where p_k has interactions less than α do
 14. if $(\kappa_{i+j-1}, \kappa_k) \in P$ then $o_j \leftarrow o_j + 1$
 15. else if $s_i = 1$ then add $(\kappa_{i+j-1}, \kappa_k)$ to N.
 16. else add $(\kappa_{i+j-1}, \kappa_k)$ to K.
 17. if $s_i \neq 1$ then add $(K, s_i - o_j)$ to H_k.
5. return P, N, H_k.

Algorithm 2: ExtractFuzzyRuleset

Input: a conditional ruleset \mathcal{H}_k

Output: A set N_{add}

1. while $\mathcal{H}_k \neq \emptyset$
 2. for each (K_i, s_i) with the largest s_i do
 3. count the number $\text{occ}(j,k)$ of appearances of (κ_j, κ_k) in all K_i's.
 4. for each (K_i, s_i) with the largest s_i do
 5. while the condition does not hold do
 6. find a pair (κ_j, κ_k) of bead types with the biggest $\text{occ}(j,k)$.
 7. add (κ_j, κ_k) to N_{add}.
 8. delete (K_i, s_i) from \mathcal{H}_k.
 9. return N_{add}

In summary, we first extract necessary and sufficient conditions of rules from the set of ruleset sizes by Algorithm 1. We accumulate P, N and \mathcal{H}_c by running Algorithm 1 for $1 \leq i \leq t$, and then run Algorithm 2 to construct a representative fuzzy ruleset. We construct a fuzzy ruleset graph from the representative fuzzy ruleset, and use an approximation algorithm for the vertex coloring problem to find an approximate solution for the FRSR-BTM-Isomorphic problem. We establish the following theorem.

Theorem 5. Using Algorithm 1, Algorithm 2 and an approximation algorithm for the vertex coloring problem, we can approximately solve the RSOPT-Isomorphic problem in $O(5^4 \delta n (\delta + \log n + t) + n^3)$ time using $O(5^4 \delta n)$ space.

References